Spatially and temporally continuous LAI data sets based on an integrated filtering method: Examples from North America

نویسندگان

  • Hongliang Fang
  • Shunlin Liang
  • John R. Townshend
  • Robert E. Dickinson
چکیده

Leaf Area Index (LAI) is an important biophysical variable for characterizing the land surface vegetation. Global LAI product has been routinely produced from the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellite platforms. However, the MODIS standard LAI product is not continuous both spatially and temporally. To fill the gaps and improve the quality, we have developed a data filtering algorithm. This filter, called the temporal spatial filter (TSF), integrates both spatial and temporal characteristics for different plant functional types. The spatial gaps are first filled with the multi-year averages of the same day. If the values are missing over all years, the pixel is filled with a new estimate using the vegetation continuous field–ecosystem curve fitting method. The TSF integrates both the multi-seasonal average trend (background) and the seasonal observation. We implement this algorithm using the MODIS Collection 4 LAI product over North America. Comparison of the TSF results with the Savitzky–Golay filter indicates that the TSF performs much better in restoring the spatial and temporal distribution of seasonal LAI trends. The new LAI product has been validated by comparing with field measurements and the derived LAI maps from ETM+ data at a broadleaf forest site and an agricultural site. The validation results indicate that the new LAI product agrees better with both the field measurements and LAI values obtained from the ETM+ than does the MODIS LAI standard product, which usually shows higher LAI values. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey of Integrated and Non-Integrated Formulae on Suspended Sediment Load; Case Study: Soolegan River, North Karoon Basin, Iran

Predictions of suspended sediment load for Soolegan River, Iran using selected empirical equ-ations were made based on 355 data sets. Data include flow discharges from 3.11 m3/s to 43.81 m3/s, flow velocities from 0.22 m/s to 1.03 m/s, and flow depths from 0.5 to 1.03 m. Equations of Einstein (1950), Bagnold (1966), Toufalleti (1968), Brooks (1963), Chang-Simons-Richardson(1965),Lane-Kalinske (...

متن کامل

Universal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications

It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy.  A formula to compute the lower upper bounds on the number  of interval-valued fuzzy sets needed to achieve a pre-specified approximation  accuracy for an arbitrary multivariate con...

متن کامل

Spatially and temporally continuous LAI datasets based on the mixed pixel decomposition method

The leaf area index (LAI) is a key biophysical parameter that determines the state of plant growth. A global LAI has been routinely produced by the Moderate Resolution Imaging Spectro-radiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR). However, the MODIS and AVHRR LAI products cannot be synchronized with the same spatial and temporal resolution. The LAI features are not dis...

متن کامل

Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-veg...

متن کامل

Sequential Method with Incremental Analysis Update to Retrieve Leaf Area Index from Time Series MODIS Reflectance Data

High-quality leaf area index (LAI) products retrieved from satellite observations are urgently needed for crop growth monitoring and yield estimation, land-surface process simulation and global change studies. In recent years, sequential assimilation methods have been increasingly used to retrieve LAI from time series remote-sensing data. However, the inherent characteristics of these sequentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007